Part Number Hot Search : 
10A302ML ISL80083 SP9841BS SF502 HAT1005F ELM45X 74LVX125 TA0860
Product Description
Full Text Search
 

To Download MAX6782 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  MAX6782?ax6790 low-power, 1% accurate, dual-/triple-/quad-level battery monitors in small tdfn and tqfn packages _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ maxim integrated products 1 19-0541; rev 1; 10/06 for pricing, delivery, and ordering information, please contact maxim/dallas direct! at 1-888-629-4642, or visit maxim? website at www.maxim-ic.com.            general description features 1% accurate threshold specified over full temperature range dual-/triple-/quad, low-battery output options low 5.7? battery current open-drain or push-pull outputs fixed or adjustable hysteresis low input bias current guaranteed valid low-battery-output logic state down to v batt = 1.05v reverse-battery protection immune to short battery transients fully specified from -40? to +85? small tdfn and tqfn packages the MAX6782?ax6790 are low-power, 1% accurate, dual-/triple-/quad-level battery monitors offered in small tdfn and tqfn packages. these devices are ideal for monitoring single lithium-ion (li+) cells, or multicell alka- line/nicd/nimh power sources. these devices feature fixed and adjustable hysteresis options to eliminate out- put chattering associated with battery-voltage monitors. the MAX6782/max6783 offer four battery monitors in a single package with factory-set (0.5%, 5%, 10%) or adjustable hysteresis. the max6784/max6785 provide three battery monitors with factory-set (0.5%, 5%, 10%) or adjustable hysteresis. the max6786/max6787/ max6788 offer two battery monitors with external inputs for setting the rising and falling thresholds, allowing external hysteresis control. the max6789/max6790 fea- ture quad-level overvoltage detectors with complemen- tary outputs. the MAX6782?ax6790 are offered with either open-drain or push-pull outputs. the MAX6782/max6784/max6786/ max6789 are available with push-pull outputs while the max6783/max6785/max6787/max6790 are available with open-drain outputs. the max6788 is available with one open-drain output and one push-pull output (see the selector guide ). this family of devices is offered in space- saving tdfn and tqfn packages and is fully specified over the -40c to +85c extended temperature range. ordering information selector guide applications ordering information continued at end of data sheet. + denotes lead-free package. * ep = exposed paddle. the MAX6782/max6783/max6784/max6785 are available with factory-trimmed hysteresis. specify trim by replacing ??with ??for 0.5%, ??for 5%, or ??for 10% hysteresis. pin configuration and typical operating circuit appear at end of data sheet. part temp range pin- package pkg code MAX6782 te_+ -40? to +85? 16 tqfn-ep* t1633-4 max6783 te_+ -40? to +85? 16 tqfn-ep* t1633-4 max6784 tc_+ -40? to +85? 12 tqfn-ep* t1233-1 max6785 tc_+ -40? to +85? 12 tqfn-ep* t1233-1 part monitor level lbo output ov ov output type hysteresis MAX6782te_+ 4 quad push-pull fixed/adj max6783te_+ 4 quad open drain fixed/adj max6784tc_+ 3 triple push-pull fixed/adj max6785tc_+ 3 triple open drain fixed/adj max6786ta+ 2 dual push-pull adj max6787ta+ 2 dual open drain adj max6788ta+ 2 dual push-pull/open drain adj max6789tb+ 4 single single push-pull max6790tb+ 4 single single open drain note: all devices are available in tape and reel in 2.5k increments. for tape and reel orders, add a ??after the ??to complete th e part number. battery-powered systems (single-cell li+ or multicell nimh, nicd, alkaline) cell phones/cordless phones pagers portable medical devices pdas electronic toys mp3 players
MAX6782?ax6790 low-power, 1% accurate, dual-/triple-/quad-level battery monitors in small tdfn and tqfn packages 2 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ a a b b s s o o l l u u t t e e m m a a x x i i m m u u m m r r a a t t i i n n g g s s electrical characteristics (v batt = 1.6v to 5.5v, t a = -40? to +85?, unless otherwise specified. typical values are at t a = +25?.) (note 1) stresses beyond those listed under ?bsolute maximum ratings?may cause permanent damage to the device. these are stress rating s only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specificatio ns is not implied. exposure to absolute maximum rating conditions for extended periods may affect device reliability. (all voltages referenced to gnd.) batt.........................................................................-0.3v to +6v in1?n4, lbh1, lbl1, lbh2, lbl2 ..................-0.3v to min ((v batt + 0.3v) and +6v) hadj1?adj4, ref .......-0.3v to min ((v batt + 0.3v) and +6v) lbo1 lbo4 (push-pull) ..-0.3v to min ((v batt + 0.3v) and +6v) lbo1 lbo4 (open drain).........................................-0.3v to +6v input current (all pins) ........................................................20ma output current (all pins) .....................................................20ma continuous power dissipation (t a = +70?) 8-pin tdfn (derate 23.8mw/? above +70?) ..........1905mw 10-pin tdfn (derate 24.4mw/? above +70?) ........1951mw 12-pin thin qfn (derate 16.7mw/? above +70?) ..1333mw 16-pin thin qfn (derate 20.8mw/? above +70?) ..1667mw operating temperature range ...........................-40? to +85? junction temperature ?150? storage temperature range .............................-65? to +150? lead temperature (soldering, 10s) .................................+300? parameter symbol conditions min typ max units t a = 0? to +70? 1.05 5.5 operating voltage range (note 2) v batt t a = -40? to +85? 1.2 5.5 v v batt = 3.7v, no load 6.3 10 ? supply current i q v batt = 1.8v, no load 5.7 ? startup time (note 3) v batt rising from 0 to 1.6v 5 ms MAX6782/max6783/max6784/max6785 0.5% hysteresis (a version) 0.5994 0.6055 0.6115 5% hysteresis (b version) 0.5723 0.5781 0.5839 in_ falling threshold (note 4) v inf 10% hysteresis (c version) 0.5422 0.5477 0.5531 v in_ rising threshold (note 4) v inr 0.6024 0.6085 0.6146 v in_, hadj_ input leakage current v in_, v hadj_ 0.3v 5na reference output v ref 0.6024 0.6085 0.6146 v reference load regulation i ref = 0 to 1ma 0.3 mv/ma reference temperature coefficient tempco 15 ppm/? reference short-circuit current 20 ma hysteresis adjustment range 0.4 v ref v hysteresis adjustment logic low v hall 0.07 v hysteresis adjustment logic high v halh 0.17 v max6786/max6787/max6788 lbl_, lbh_ threshold v th 0.6024 0.6085 0.6146 v lbl_, lbh_ input leakage current v lbl , v lbh_ 0.3v 5na
MAX6782?ax6790 low-power, 1% accurate, dual-/triple-/quad-level battery monitors in small tdfn and tqfn packages _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 3 electrical characteristics (continued) (v batt = 1.6v to 5.5v, t a = -40? to +85?, unless otherwise specified. typical values are at t a = +25?.) (note 1) parameter symbol conditions min typ max units MAX6782?ax6788 lbo_ propagation delay t pd ?00mv overdrive 30 ? v batt 1.2v, i sink = 100? 0.3 v v batt 2.7v, i sink = 1.2ma 0.3 v lbo_ output low voltage (push- pull or open drain) v ol v batt 4.5v, i sink = 3.2ma 0.4 v v batt 1.6v, i source = 10? 0.8 x v batt v v batt 2.7v, i source = 500? 0.8 x v batt v lbo_ output high voltage (push-pull) (note 5) v oh v batt 4.5v, i source = 800? 0.8 x v batt v lbo_ output leakage current (open drain) output not asserted, v lbo_ = 0 or 5v 500 na max6789/max6790 in_ rising threshold v th+ 0.6024 0.6085 0.6146 v in_ hysteresis 31 mv in_ input leakage current v in_ 0.3v 5na ov , ov delay time t pd ?00mv overdrive 30 ? v batt 1.6v, i sink = 100?, output asserted 0.3 v batt 2.7v, i sink = 1.2ma, output asserted 0.3 ov output low voltage (push- pull or open drain) v ol v batt 4.5v, i sink = 3.2ma, output asserted 0.4 v v batt 1.2v, i source = 10?, output not asserted 0.8 x v batt v batt 2.7v, i source = 500?, output not asserted 0.8 x v batt ov output high voltage (push- pull) (note 5) v oh v batt 4.5v, i sink = 800?, output not asserted 0.8 x v batt v ov output leakage current (open drain) output not asserted, v ov , v ov = 0 or 5v 500 na v batt 1.2v, i sink = 100?, output not asserted 0.3 v batt 2.7v, i sink = 1.2ma, output not asserted 0.3 ov output low voltage (push-pull or open drain) v ol v batt 4.5v, i sink = 3.2ma, output not asserted 0.4 v
MAX6782?ax6790 low-power, 1% accurate, dual-/triple-/quad-level battery monitors in small tdfn and tqfn packages 4 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ electrical characteristics (continued) (v batt = 1.6v to 5.5v, t a = -40? to +85?, unless otherwise specified. typical values are at t a = +25?.) (note 1) parameter symbol conditions min typ max units v batt 1.6v, i source = 10?, output asserted 0.8 x v batt v batt 2.7v, i source = 500?, output asserted 0.8 x v batt ov output high voltage (push- pull ) (note 5) v oh v batt 4.5v, i source = 800?, output asserted 0.8 x v batt v ov output leakage current (open drain) output asserted, v ov = 0 or 5v 500 na clear input low voltage v il 0.3 x v batt v clear input high voltage v ih 0.7 x v batt v clear pullup resistance 25 80 k ? clear minimum pulse width 1 ? clear delay time t cld 300 ns note 1: devices are tested at t a = +25? and guaranteed by design for t a = t min to t max as specified. note 2: operating voltage range ensures low battery output is in the correct state. minimum battery voltage for electrical specifica- tion is 1.6v. note 3: reference and threshold accuracy is only guaranteed after the startup time. startup time is guaranteed by design. note 4: the rising threshold is guaranteed to be higher than the falling threshold. note 5: the source current is the total source current from all outputs.
MAX6782?ax6790 low-power, 1% accurate, dual-/triple-/quad-level battery monitors in small tdfn and tqfn packages _______________________________________________________________________________________ 5 supply current vs. temperature MAX6782 toc01 temperature ( c) supply current ( a) 60 35 -15 10 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 4.0 -40 85 v batt = 5v v batt = 3.6v v batt = 1.8v propagation delay vs. temperature MAX6782 toc02 temperature ( c) propagation delay ( s) 60 35 10 -15 10 20 30 40 50 60 70 0 -40 85 v in_ = 100mv overdrive maximum transient duration vs. threshold overdrive MAX6782 toc03 threshold overdrive (mv) maximum transient duration ( s) 100 10 100 200 300 400 500 600 700 800 900 1000 0 1 1000 output asserted above this line normalized threshold voltages vs. temperature (MAX6782tea) MAX6782 toc04 temperature ( c) normalized threshold (v) 60 35 10 -15 0.996 0.997 0.998 0.999 1.000 1.001 1.002 1.003 1.004 1.005 0.995 -40 85 normalized at t a = +25 c falling rising normalized threshold voltages vs. temperature (MAX6782teb) MAX6782 toc05 temperature ( c) normalized threshold (v) 60 35 10 -15 0.996 0.997 0.998 0.999 1.000 1.001 1.002 1.003 1.004 1.005 0.995 -40 85 normalized at t a = +25 c falling rising normalized threshold voltages vs. temperature (MAX6782tec) MAX6782 toc06 temperature ( c) normalized threshold (v) 60 35 10 -15 0.996 0.997 0.998 0.999 1.000 1.001 1.002 1.003 1.004 1.005 0.995 -40 85 normalized at t a = +25 c falling rising typical operating characteristics (v batt = 3.6v, t a = +25?, unless otherwise noted.)
MAX6782?ax6790 low-power, 1% accurate, dual-/triple-/quad-level battery monitors in small tdfn and tqfn packages 6 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ typical operating characteristics (continued) (v batt = 3.6v, t a = +25?, unless otherwise noted.) lbo output voltage low vs. sink current MAX6782 toc07 sink current (ma) output voltage (v) 12 9 6 3 0.1 0.2 0.3 0.4 0.5 0.6 0 015 v batt = 1.8v v batt = 3.3v v batt = 5.0v MAX6782 toc08 source current (ma) output voltage (v) 4 3 2 1 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 1.0 05 lbo output voltage high vs. source current v batt = 1.8v v batt = 3.3v v batt = 5.0v push-pull versions reference voltage vs. temperature MAX6782 toc09 temperature ( c) reference voltage (v) 60 35 10 -15 0.604 0.608 0.612 0.616 0.620 0.600 -40 85 MAX6782tea reference voltage vs. reference current MAX6782 toc10 reference current (ma) v ref (v) 0.9 0.8 0.6 0.7 0.2 0.3 0.4 0.5 0.1 0.56 0.57 0.58 0.59 0.60 0.61 0.62 0.63 0.64 0.65 0.55 01.0 MAX6782teb reference voltage vs. supply voltage MAX6782 toc11 supply voltage (v) reference voltage (v) 5.0 4.5 3.5 4.0 2.5 3.0 2.0 0.6086 0.6087 0.6088 0.6089 0.6090 0.6091 0.6092 0.6093 0.6094 0.6095 0.6085 1.5 5.5 MAX6782teb clear latch circuit MAX6782 toc12 100 s/div in_ 5v/div clear 5v/div ov 5v/div
MAX6782?ax6790 low-power, 1% accurate, dual-/triple-/quad-level battery monitors in small tdfn and tqfn packages _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 7 pin description pin MAX6782/ max6783 max6784/ max6785 name function 1 1 in2 battery monitor input 2. connect to an external resistive divider to set the trip threshold for monitor 2. 2 2 in3 battery monitor input 3. connect to an external resistive divider to set the trip threshold for monitor 3. 3 in4 battery monitor input 4. connect to an external resistive divider to set the trip threshold for monitor 4. 4 3 ref reference output. ref can source up to 1ma. ref does not require an external bypass capacitor for stability. keep the capacitance from ref to gnd below 50pf. 5 4 hadj1 hysteresis adjustment input 1. connect hadj1 to gnd to select an internal preset hysteresis option. connect a resistive divider from ref to hadj1 and to gnd to externally adjust the hysteresis for in1 from its internal preset hysteresis (see figure 6). 6 5 hadj2 hysteresis adjustment input 2. connect hadj2 to gnd to select an internal preset hysteresis option. connect a resistive divider from ref to hadj2 and to gnd to externally adjust the hysteresis for in2 from its internal preset hysteresis (see figure 6). 7 6 hadj3 hysteresis adjustment input 3. connect hadj3 to gnd to select an internal preset hysteresis option. connect a resistive divider from ref to hadj3 and to gnd to externally adjust the hysteresis for in3 from its internal preset hysteresis (see figure 6). 8 hadj4 hysteresis adjustment input 4. connect hadj4 to gnd to select an internal preset hysteresis option. connect a resistive divider from ref to hadj4 and to gnd to externally adjust the hysteresis for in4 from its internal preset hysteresis (see figure 6). 9 lbo4 active-low, low-battery output 4. lbo4 asserts when v in4 falls below the falling threshold voltage. lbo4 deasserts when v in4 exceeds the rising threshold voltage. 10 7 lbo3 active-low, low-battery output 3. lbo3 asserts when v in3 falls below the falling threshold voltage. lbo3 deasserts when v in3 exceeds the rising threshold voltage. 11 8 lbo2 active-low, low-battery output 2. lbo2 asserts when v in2 falls below the falling threshold voltage. lbo2 deasserts when v in2 exceeds the rising threshold voltage. 12 9 lbo1 active-low, low-battery output 1. lbo1 asserts when v in1 falls below the falling threshold voltage. lbo1 deasserts when v in1 exceeds the rising threshold voltage. 13 10 batt battery input. power supply to the device. for better noise immunity, bypass batt to gnd with a 0.1? capacitor as close to the device as possible. 14 11 gnd ground 15 n.c. no connection. not internally connected. 16 12 in1 battery monitor input 1. connect to an external resistive divider to set the trip threshold for monitor 1. MAX6782/max6783/max6784/max6785
MAX6782?ax6790 low-power, 1% accurate, dual-/triple-/quad-level battery monitors in small tdfn and tqfn packages 8 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ pin description (continued) pin name function 1 lbl1 falling trip level input 1. connect to an external resistive divider to set the falling trip level. 2 lbh1 rising trip level input 1. connect to an external resistive divider to set the rising trip level. 3 lbl2 falling trip level input 2. connect to an external resistive divider to set the falling trip level. 4 lbh2 rising trip level input 2. connect to an external resistive divider to set the rising trip level. 5 gnd ground 6 lbo2 active-low, low-battery output 2. lbo2 asserts when v lbl2 falls below the falling threshold voltage. lbo2 deasserts when v lbh2 exceeds the rising threshold voltage. 7 lbo1 active-low, low-battery output 1. lbo1 asserts when v lbl1 falls below the falling threshold voltage. lbo1 deasserts when v lbh1 exceeds the rising threshold voltage. 8 batt battery input. power supply to the device. for better noise immunity, bypass batt to gnd with a 0.1? capacitor as close to the device as possible. max6786/max6787/max6788 pin name function 1 in1 overvoltage monitor input 1 2 in2 overvoltage monitor input 2 3 in3 overvoltage monitor input 3 4 in4 overvoltage monitor input 4 5 gnd ground 6 clear active-low clear input. ov and ov do not latch when an overvoltage fault is detected if clear is held low. clear has an internal pullup resistor to batt. 7 n.c. no connection. not internally connected. 8 ov active-low overvoltage output. when any of the inputs (v in_ ) exceeds its respective rising threshold voltage, ov asserts and stays asserted until clear is pulled low or the power to the device is cycled. ov does not latch when an overvoltage fault is detected if clear is held low. 9 ov active-high overvoltage output. inverse of ov . 10 batt battery input. power supply to the device. for better noise immunity, bypass batt to gnd with a 0.1? capacitor as close to the device as possible. max6789/max6790 detailed description the MAX6782?ax6788 are designed to monitor two to four battery levels (1% accuracy) and assert an active-low output indicator when the monitored voltage level falls below the user-set threshold. each battery level is associated with an independent open-drain or push-pull output. each of these independent outputs can be used to provide low battery warnings at differ- ent voltage levels. each of these monitored levels offers fixed or adjustable hysteresis in order to prevent the output from chattering as the battery recovers from the lighter loads. the MAX6782?ax6785 also feature ref- erence outputs that can source up to 1ma. the max6789/max6790 monitor four overvoltage con- ditions and assert the complementary overvoltage out- puts when any voltage at the inputs exceeds its respective threshold. the max6789/max6790 allow each trip threshold to be set with external resistors. these devices also feature a latch and a clear function. figures 1, 2, and 3 show the simplified block diagrams for the MAX6782?ax6790. see the selector guide .
MAX6782?ax6790 low-power, 1% accurate, dual-/triple-/quad-level battery monitors in small tdfn and tqfn packages _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 9 MAX6782 max6783 max6784 max6785 hysteresis select gnd ( ) MAX6782/max6783 only comparator section 1 ref comparator section 2 comparator section 3 comparator section 4 reference internal hysteresis ladder batt in1 hadj1 lbo1 in2 hadj2 lbo2 in3 hadj3 lbo3 in4 hadj4 lbo4 figure 1. MAX6782?ax6785 block diagram max6786 max6787 max6788 ref batt r 1 r hyst lbh_ lbl_ lbo_ r 2 gnd figure 2. max6786/max6787/max6788 block diagram
MAX6782?ax6790 low-battery/overvoltage output all devices are offered with either push-pull or open- drain outputs (see the selector guide ). the max6788 has one push-pull output and one open-drain output, configured as shown in table 1. all open-drain outputs require an external pullup resis- tor. the open-drain pullup resistor may be connected to an external voltage up to +6v, regardless of the volt- age at batt. hysteresis input hysteresis defines two thresholds, separated by the hysteresis voltage, configured so the output asserts when the input falls below the falling threshold, and deasserts only when the input rises above the rising threshold. figures 4 and 5 show this graphically. hysteresis removes, or greatly reduces, the possibility of the output changing state in response to noise or battery-terminal voltage recovery after load removal. low-power, 1% accurate, dual-/triple-/quad-level battery monitors in small tdfn and tqfn packages 10 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ max6789 max6790 ref batt in_ clear ov gnd latch control figure 3. max6789/max6790 block diagram device lbo1 lbo2 max6788 push-pull open drain table 1. max6788 outputs
MAX6782?ax6790 low-power, 1% accurate, dual-/triple-/quad-level battery monitors in small tdfn and tqfn packages _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 11 internal hysteresis internal hysteresis v inr v inf in_ lbo_ v hall v inr v inf v hadj_ v halh t pd t pd t pd t pd v hadj_ a) normal operation for v hadj_ < v hall . b) normal operation for v hadj_ > v halh . lbo_ in_ figure 4. MAX6782?ax6785 timing
MAX6782?ax6790 low-power, 1% accurate, dual-/triple-/quad-level battery monitors in small tdfn and tqfn packages 12 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ MAX6782?ax6785 hysteresis factory-set hysteresis the MAX6782?ax6785 have factory-set hysteresis for ease of use and reduced external parts count. for these devices the absolute hysteresis voltage is a per- centage of the internally generated reference. the amount depends on the device option. ??devices have 0.5% hysteresis, ??devices have 5% hysteresis, and ??devices have 10% hysteresis. table 2 presents the threshold voltages for devices with factory-set hys- teresis. for factory-set hysteresis, connect hadj_ to gnd. externally adjusted hysteresis the MAX6782?ax6785 can also be configured for externally adjustable hysteresis. connect a resistive divider from ref to hadj_ and to gnd (figure 6) to set the hysteresis voltage. the hysteresis adjustment range is from 0.4v to v ref , and the voltage at hadj_ (v hadj_ ) must be set higher than hysteresis adjustment logic high (v halh ) (figure 4b). note that if v hadj_ is lower than hysteresis adjustment logic low (v hall ), these devices switch back to the internal fac- tory-set hysteresis (figure 4a). max6786/max6787/max6788 adjustable hysteresis the max6786/max6787/max6788 offer external hystere- sis control through the resistive divider that monitors bat- tery voltage. figure 2 shows the connections for external hysteresis. see calculating an external hysteresis resistive divider (max6786/max6787/max6788) section for more information. t pd v th+ v th- in_ clear ov ov t cld figure 5. max6789/max6790 timing device option percent hysteresis (%) falling threshold (v inf ) (v) rising threshold (v inr ) (v) a 0.5 0.6055 0.6085 b 5 0.5781 0.6085 c 10 0.5477 0.6085 table 2. typical falling and rising thresholds for MAX6782?ax6785 (hadj_ = gnd)
reference output the reference output can provide up to 1ma of output current. the output is not buffered. excessive loading affects the accuracy of the thresholds. an external capacitor is not required for stability and is stable for capacitive loads up to 50pf. in applications where the load or the supply can experience step changes, a capacitor reduces the amount of overshoot (under- shoot) and improves the circuit? transient response. place the capacitor as close to the device as possible for best performance. applications information resistor-value selection choosing the proper external resistors is a balance between accuracy and power use. the input to the volt- age monitor, while high impedance, draws a small cur- rent, and that current travels through the resistive divider, introducing error. if extremely high resistor val- ues are used, this current introduces significant error. with extremely low resistor values, the error becomes negligible, but the resistive divider draws more power from the battery than necessary, and shortens battery life. see figure 6 and calculate the optimum value for r1 using: where e a is the fraction of the maximum acceptable absolute resistive divider error attributable to the input leakage current (use 0.01 for 1%), v batt is the battery voltage at which lbo should activate, and i l is the worst-case in_ leakage current, from the electrical characteristics . for example, for 0.5% error, a 2.8v battery minimum, and 5na leakage, r 1 = 2.80m ? . calculate r 2 using: where v inf is the falling threshold voltage from table 2. continuing the above example, and selecting v inf = 0.5477v (10% hysteresis device), r 2 = 681k ? . there are other sources of error for the battery threshold, including resistor and input monitor tolerances. calculating an external hysteresis resistive divider (MAX6782?ax6785) to set the hysteresis, place a resistive divider from ref to hadj_ as shown in figure 6. the resistive divider sets voltage on hadj_, wh ich controls the falling thresh- old (v inf ) on the associated in_ (the rising threshold (v inr ) is fixed). see table 2. calculate r 3 using: where e a is the fraction of the maximum acceptable absolute resistive divider error attributable to the input leakage current (use 0.01 for 1%), v ref is the refer- ence output voltage, and i l is the worst-case hadj_ leakage current. calculate r 4 using: where v inf is the desired falling voltage threshold. to calculate the percent hysteresis, use: where v inr is the rising voltage. calculating an external hysteresis resistive divider (max6786/max6787/max6788) setting the hysteresis externally requires calculating three resistor values, as indicated in figure 2. first cal- culate r 1 using: and r 20 using: where r 20 = r 2 + r hyst determine the total resistive- divider current, i total , at the trip voltage using: then, determine r hyst using: where v hyst is the required hysteresis voltage. finally, determine r 2 using: r 2 = r 20 - r hyst r v i hyst hyst total = i v rr total batt = + 120 r vr vv as in the above example th batt th 20 1 = ? ( ) r ev i a batt l 1 = hysteresis vv v inr inf inr % () = ? 100 r vr vv inf ref inf 4 3 = ? r ev i a ref l 3 = r vr vv inf batt inf 2 1 = ? r ev i a batt l 1 = MAX6782?ax6790 low-power, 1% accurate, dual-/triple-/quad-level battery monitors in small tdfn and tqfn packages _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 13
monitoring a battery voltage higher than the allowable v batt for monitoring higher voltages, supply a voltage to batt, which is within the specified supply range, and power the input resistive divider from the high voltage to be moni- tored. do not exceed the absolute maximum ratings. maintaining reference accuracy since the ground connection of the MAX6782?ax6790 has a small series resistance, any current flowing into an output flows to ground and causes a small voltage to develop from the internal ground to gnd. this has the effect of slightly increasing the reference voltage. to mini- mize the effect on the reference voltage, keep the total output sink current below 3ma. adding external capacitance to reduce noise and transients if monitoring voltages in a noisy environment, add a bypass capacitor of 0.1? from batt to gnd as close as possible to the device. for systems with large tran- sients, additional capacitance may be required. reverse-battery protection to prevent damage to the device during a reverse-battery condition, connect the MAX6782?ax6785 in the configu- ration shown in figure 6a or 6b. for the internal reverse- battery protection to function correctly on the MAX6782 max6790, several conditions must be satisfied: the connections to in_/lbl_/lbh_ must be made to the center node of a resistive divider going from batt to gnd. the thevenin equivalent impedance of the resistive divider must not fall below 1k ? in order to limit the current. hadj_ (MAX6782?ax6785 only) must either be connected to gnd or to the center node of a resis- tive divider going from ref to gnd. the outputs may only be connected to devices pow- ered by the same battery as the MAX6782 max6790. note that the MAX6782?ax6790 will not protect other devices in the circuit. additional application circuit figure 7 shows the max6786/max6787/max6788 in a typical two-battery-level monitoring circuit. MAX6782?ax6790 low-power, 1% accurate, dual-/triple-/quad-level battery monitors in small tdfn and tqfn packages 14 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ MAX6782 max6783 max6784 max6785 in_ r 1 r 2 r 1 r 2 a) factory preset hysteresis connection lbo_ ref hadj_ gnd batt MAX6782 max6783 max6784 max6785 in_ b) external hysteresis adjust connection lbo_ ref hadj_ gnd batt r 3 r 4 1 figure 6. internal preset or externally adjusted hysteresis connection max6786 max6787 max6788 lbl1 lbo1 lbh1 lbl2 lbh2 gnd batt lbo2 figure 7. two-battery-level monitor configuration
MAX6782?ax6790 low-power, 1% accurate, dual-/triple-/quad-level battery monitors in small tdfn and tqfn packages _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 15 top marks part top mark MAX6782tea+ +aeg MAX6782teb+ +aeh MAX6782tec+ +aei max6783tea+ +aej max6783teb+ +aek max6783tec+ +ael max6784tca+ +aav max6784tcb+ +aaw max6784tcc+ +aax max6785tca+ +aay max6785tcb+ +aaz max6785tcc+ +aba max6786ta+ +apu max6787ta+ +apv max6788ta+ +apw max6789tb+ +aqi max6790tb+ +aqj typical operating circuit MAX6782 max6783 in1 lbo1 dead battery backup memory shut down subsystem slow down processor speed in2 in3 in4 gnd hadj_ batt lbo2 lbo3 lbo4 ref ordering information (continued) + denotes lead-free package. * ep = exposed paddle. the MAX6782/max6783/max6784/max6785 are available with factory-trimmed hysteresis. specify trim by replacing ??with ??for 0.5%, ??for 5%, or ??for 10% hysteresis. part temp range pin- package pkg code max6786 ta+t -40? to +85? 8 tdfn-ep* t833-3 max6787 ta+t -40? to +85? 8 tdfn-ep* t833-3 max6788 ta+t -40? to +85? 8 tdfn-ep* t833-3 max6789 tb+t -40? to +85? 10 tdfn-ep* t1033-1 max6790 tb+t -40? to +85? 10 tdfn-ep* t1033-1
MAX6782?ax6790 low-power, 1% accurate, dual-/triple-/quad-level battery monitors in small tdfn and tqfn packages 16 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ pin configurations 15 16 + ++ + 14 13 6 5 7 in3 ref 8 in2 lbo2 lbo4 lbo1 12 gnd 4 12 11 9 n.c. in1 hadj4 hadj3 hadj2 hadj1 MAX6782 max6783 in4 lbo3 3 10 batt thin qfn top view 12 11 10 4 5 in3 ref 6 in2 lbo2 lbo3 lbo1 12 gnd 3 987 in1 hadj3 hadj2 hadj1 max6784 max6785 batt thin qfn 134 865 batt lbo2 gnd max6786 max6787 max6788 2 7 lbo1 lbl1 lbl2 lbh2 lbh1 tdfn 1 3 4 10 8 7 batt ov n.c. in1 in3 in4 max6789 max6790 2 9 ov in2 5 6 clear gnd tdfn chip information process: bicmos
MAX6782?ax6790 12x16l qfn thin.eps package information (the package drawing(s) in this data sheet may not reflect the most current specifications. for the latest package outline info rmation go to www.maxim-ic.com/packages .) low-power, 1% accurate, dual-/triple-/quad-level battery monitors in small tdfn and tqfn packages _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 17
MAX6782?ax6790 low-power, 1% accurate, dual-/triple-/quad-level battery monitors in small tdfn and tqfn packages 18 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ package information (continued) (the package drawing(s) in this data sheet may not reflect the most current specifications. for the latest package outline info rmation go to www.maxim-ic.com/packages .)
MAX6782?ax6790 package information (continued) (the package drawing(s) in this data sheet may not reflect the most current specifications. for the latest package outline info rmation go to www.maxim-ic.com/packages .) 6, 8, &10l, dfn thin.eps h 1 2 21-0137 package outline, 6,8,10 & 14l, tdfn, exposed pad, 3x3x0.80 mm low-power, 1% accurate, dual-/triple-/quad-level battery monitors in small tdfn and tqfn packages _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 19
MAX6782?ax6790 low-power, 1% accurate, dual-/triple-/quad-level battery monitors in small tdfn and tqfn packages maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a maxim product. no circu it patent licenses are implied. maxim reserves the right to change the circuitry and specifications without notice at any time. 20 ____________________maxim integrated products, 120 san gabriel drive, sunnyvale, ca 94086 408-737-7600 2006 maxim integrated products is a registered trademark of maxim integrated products, inc. package information (continued) (the package drawing(s) in this data sheet may not reflect the most current specifications. for the latest package outline info rmation go to www.maxim-ic.com/packages .) common dimensions symbol min. max. a 0.70 0.80 d 2.90 3.10 e 2.90 3.10 a1 0.00 0.05 l 0.20 0.40 pkg. code n d2 e2 e jedec spec b [(n/2)-1] x e package variations 0.25 min. k a2 0.20 ref. 2.300.10 1.500.10 6 t633-1 0.95 bsc mo229 / weea 1.90 ref 0.400.05 1.95 ref 0.300.05 0.65 bsc 2.300.10 8 t833-1 2.00 ref 0.250.05 0.50 bsc 2.300.10 10 t1033-1 2.40 ref 0.200.05 - - - - 0.40 bsc 1.700.10 2.300.10 14 t1433-1 1.500.10 1.500.10 mo229 / weec mo229 / weed-3 0.40 bsc - - - - 0.200.05 2.40 ref t1433-2 14 2.300.10 1.700.10 t633-2 6 1.500.10 2.300.10 0.95 bsc mo229 / weea 0.400.05 1.90 ref t833-2 8 1.500.10 2.300.10 0.65 bsc m o229 / weec 0.300.05 1.95 ref t833-3 8 1.500.10 2.300.10 0.65 bsc m o229 / weec 0.300.05 1.95 ref -drawing not to scale- h 2 2 21-0137 package outline, 6,8,10 & 14l, tdfn, exposed pad, 3x3x0.80 mm 2.300.10 mo229 / weed-3 2.00 ref 0.250.05 0.50 bsc 1.500.10 10 t1033-2


▲Up To Search▲   

 
Price & Availability of MAX6782

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X